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SUMMARY 

A brief overview of classes of turbulent swirling flow in conical diffusers is given, together with a description 
of appropriate numerical schemes for each class. Numerical results obtained for the class of moderate swirl 
in a 20" diffuser and for the class of no swirl in an 8" diffuser are compared with experimental results. The 
results are obtained using a multi-sweep scheme solving the full steady state time-averaged Navier-Stokes 
equations. Turbulence quantities are approximated using two types of algebraic Reynolds stress model and 
two types of k-& model. One of the algebraic Reynolds stress models includes extra production terms 
associated with the Christoffel symbols in cylindrical co-ordinates, and one of the k-E models includes a 
swirl-related modification to the E equation. It is demonstrated that the standard k--E model gives poor 
prediction of the mean flow, and it is necessary to at least use the modified form or one of the two algebraic 
Reynolds stress models. 

KEY WORDS Turbubnce Swirl Conical diffusers Multi-sweep Navier-Stokes equations Reynolds stress mode 
k-E model 

1. INTRODUCTION 

Diffusers are commonly used fluid mechanical devices which act to convert dynamic pressure to 
static pressure. When placed in the flow downstream of the rotor in a wind turbine, they increase 
the amount of energy that may be extracted from the windstream.',' A measure of the efficiency 
of the diffuser in performing this function is the total pressure recovery obtained. For conical 
diffusers it is found that maximum pressure recovery is obtained for total internal angles of 
around 8", provided the area ratio is large enough, typically around four.3 

It is not always practical to use such an optimum diffuser because of design constraints, such as 
size and weight, and for this reason it is useful to know if it is possible to obtain near-optimum 
pressure recovery for smaller, lighter diffusers. Thus, typically, it is desired to use a wider-angle 
diffuser to reduce the total length and the amount of material required. However, when a wider- 
angle diffuser is used with an area ratio of four, the occurrence of separation at the wall at a 
downstream location will substantially reduce the pressure recovery. The separation is caused by 
the occurrence of a region of low momentum near the wall, due to the rapid increase in thickness 
of the boundary layer, interacting with the positive axial pressure gradient. In the extreme case 
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the diffuser will fully stall, i.e. the flow will separate at the diffuser entrance, and there will be no 
pressure recovery at all. Thus the desire to reduce the weight and size of the diffuser must be 
balanced by the effect of the loss in pressure recovery, and therefore the loss in efficiency, that the 
use of wider-angle diffusers entails. 

It has been found that the inclusion of swirl in the flow can prevent separation occurring for 
diffuser angles and area ratios at which it would otherwise occur? In this way the presence of 
swirl may allow near-optimum pressure recovery to be obtained from effectively smaller and 
lighter diffusers. In many applications, such as that of the diffuser-augmented wind turbine 
mentioned above, the flow is already swirling. In these cases any increase in efficiency obtained for 
a given diffuser by the presence of swirl is entirely serendipitous. 

The effect of including swirl is to produce a significant positive radial pressure gradient at the 
diffuser entrance, the result of the pressure balancing the centrifugal acceleration of the rotating 
component of the flow. The rapid decay of swirl in the diffuser leads to rapid decay in the radial 
pressure gradient. The effect of this is to produce a larger positive axial pressure gradient at the 
axis than would be the case for non-swirling flow and the same diffuser. This in turn leads to a 
drop in the axial centreline velocity, resulting in an increase in the near-wall axial velocity, due to 
the constant mass flow constraint, which acts to prevent the occurrence of separation at the wall. 
However, the presence of an excessive amount of swirl will cause the centreline acsial velocity to 
drop so much that reversal occurs at the centreline, leading once again to a reduced pressure 
recovery. 

In practice most flows that pass through a diffuser will be turbulent. It is therefore also 
necessary to consider the effect of turbulence on the mean flow structure, and the effect of the 
diffuser on the turbulence structure. Turbulence has a beneficial effect on the diffuser efficiency, in 
much the same way as swirl does, by acting to prevent the onset of separation. This is 
accomplished by the characteristic of turbulent velocity profiles being fuller than laminar velocity 
profiles in the boundary layer. The result of this is that the momentum in the near-wall region is 
larger and therefore better able to resist the positive pressure gradient. 

The effect of the diffuser on the turbulence appears to be two-fold. Firstly it causes the near-wall 
peak in the turbulence quantities, which is very close to the wall in a developing boundary layer, 
to occur at a distance much further out from the wall. Secondly it acts to amplify the level of 
turbulence considerably (see Figures 9 and 10). 

It is assumed that the flow is axisymmetric, of constant viscosity and incompressible. We have 
only considered diffusers with an area ratio of around four, which for turbulent flow are known to 
lead to optimal pressure recovery when the total internal angle is around 8", and have assumed 
that the inlet flow consists of a thin developing boundary layer with an inviscid core. The aim has 
been to produce a code capable of satisfactorily predicting the mean flow quantities, which may 
then be used as an aid in the design of efficient diffusers. 

It is useful to divide turbulent swirling diffuser flow into several regimes, on the basis of the 
appearance or otherwise of regions of separating and reversing axial velocity, and on the basis of 
the strength of the swirl.5 The flow types, indicated in Table I, may be further classified as being of 
elliptic or parabolic type, based on the observed numerical behaviour of the flow prediction. 
Flows that are classified as parabolic are able to be simulated numerically using a single-sweep 
algorithm marching in the axial direction, i.e. they are soluble numerically as an initial value 
problem in space.6 Those that are not, and therefore require some sort of multi-sweep algorithm, 
are classified as elliptic. 

It has been found that for diffuser angles of less than lo" no separation at the wall occurs for 
non-swirling flow. For diffuser angles of between 10" and 20" separation will occur for non- 
swirling flow; however, it is possible by the inclusion of swirl to prevent the wall separation 



SWIRLING DIFFUSER FLOW 989 

Table I. Table of flow regimes; 0 is the diffuser half-angle 

Diffuser/flow criterion Characteristics Flow type 

2 0 <  10" No separation at Parabolic 

Weak swirl (Sn < 0.3) 
the wall 
Small (< 10%) 
reduction in centreline 
axial velocity 

2 0 <  lo" No separation at Elliptic 

Moderate swirl (0-3 < Sn < 0.6) 
the wall 
Near-reversing centreline 
axial velocity 

10" < 2 0  < 20" 

Weak swirl 

Separation at Elliptic 
the wall 
Small (< 10%) 
reduction in centreline 
axial velocity 

10" < 2 0  < 20" 

Moderate swirl 

No separation at  Elliptic 
the wall 
Near-reversing centreline 
axial velocity 

0 =- 20" and/or Separation at Elliptic 
strong swirl (Sn > 0.6) the wall and/or 

centreline axial 
velocity reversal 

occurring. For diffuser angles of greater than 20" the amount of swirl necessary to prevent 
separation at the wall produces centreline reversal; that is, it is not possible to have a flow 
completely free of separation for diffuser angles of greater than 20". We divide the swirl into three 
types based on the magnitude of its effect on the centreline axial velocity. Weak swirl leads to 
minimum reduction in the axial centreline velocity. Moderate swirl leads to a significant 
reduction in the centreline axial velocity, without producing reversal. Strong swirl leads to 
centreline axial velocity reversal. 

The diffuser angle, area ratio and inlet swirl profile all influence the magnitude of the effect of 
the swirl on the axial velocity. The inlet swirl profile is either of the solid body rotation variety or, 
to some degree, of the free vortex type. It is found that generally the free vortex type of swirl will 
lead to a larger effect on the axial velocity than the solid body type for a given angular 
momentum. For this reason a meaningful swirl number Sn with which to categorize the effect of 
swirl on the axial velocity is the ratio of the maximum swirl velocity W""" to the mean axial 
velocity Urn'"" at the inlet. We then find that weak swirl typically has Sric0.3, moderate swirl has 
0.3<Sn<0.6  and strong swirl has Sn>0.6. This division of swirling conical diffuser flow is 
tabulated in Table I. 

Three numerical schemes have been developed and tested on swirling diffuser flow. The 
equation types and flow regimes that each of the schemes is used for are summarized in Table 11. 



990 S. W. ARMFIELD AND C. A. J. FLETCHER 

Table 11. Table of numerical schemes 

Numerical scheme Flow type Equation set 

Single-sweep6 Parabolic Reduced equations 

Quasi-multi-sweep' Parabolic Partially reduced equations or reduced 
equations 

Multi-sweep' Elliptic Full equations 
or parabolic or partially reduced equations or reduced 

equations 

1 . I .  Single-sweep 

The single-sweep scheme may only be used to solve a reduced form of the Navier-Stokes 
equations; that is, the Navier-Stokes equations with all the axial diffusion terms deleted, and 
additionally all the terms associated with the cross-stream velocity deleted from the cross-stream 
momentum equation, on an order-of-magnitude basis. In the rest of the paper U will be the axial 
or streamwise component of velocity, Y the radial of cross-stream component and W the swirl. 

In this scheme, presented in detail in Armfield and Fletcher,6 the domain is swept once in the 
axial direction. At each axial location the values of all the variables are obtained in sequence from 
their governing equations using, where necessary, values of the variables at the previous axial 
location. The governing equations for each variable are as follows. U is obtained from the axial 
momentum equation, Wfrom the circumferential momentum equation and Vfrom the continuity 
equation. The pressure is split into two components, one of which is interpreted as being the 
pressure at the axis and the other the radial variation of pressure. The pressure at the axis is 
obtained by enforcing the mass flow constraint. The radial variation in pressure is related directly 
to the swirl via the reduced form of the radial momentum equation. 

All equations are discretized using centred second-order differences for the linear terms. When 
non-linear terms are not available at the centred axial location, they are projected from upstream. 
This produces tridiagonal systems from the axial and circumferential momentum equations, and 
bidiagonal systems from the continuity equation and the radial momentum equation. The 
equations are then inverted in the following order at each axial location x = x". The discretized 
form of the circumferential momentum equation is inverted in two radial sweeps to give the new 
values of W at x = x"". The radial pressure variation is obtained from the discretized form of the 
radial momentum equation, integrated in a single radial sweep. The axial momentum equation is 
integrated using the most recent value of the radial variation in pressure to obtain U " + l  implicitly 
in terms of the axial pressure variation. The axial pressure is then obtained from the mass flow 
constraint, and back substitution used to give U"". Yn+l  is obtained by integrating the 
continuity equation in a single radial sweep using the most recently calculated values of U"+ l .  
This process is repeated at each axial location, with the entire domain swept in a single 
downstream march. 

When an attempt is made to use the single-sweep scheme to solve any equation set other than 
the reduced equations, an instability associated with the size of the marching step makes it 
impossible to obtain both sufficient resolution and a stable solution. This instability is discussed 
fully in Armfield and F le t~he r .~  
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1.2. Quasi-multi-sweep 

This scheme, described in detail in Armfield and Fletcher,* is used to solve the partially reduced 
equations; that is, the Navier-Stokes equations with only the axial diffusion terms deleted. It 
makes multiple sweeps of the domain and solves for all dependent variables except the pressure in 
exactly the same manner as the single-sweep scheme. The pressure is stored over the entire 
domain, allowing the pressure derivative in the axial momentum equation to be forward 
differenced, and the new values obtained during each sweep used to relax the stored field. The 
axial pressure is obtained by enforcing a mass flow constraint, also in the same manner as in the 
single-sweep scheme, while the radial variation in pressure is obtained from the discretized 
version of the radial momentum equation, integrated using a single radial sweep. 

Thus, when the quasi-multi-sweep scheme is used, multiple sweeps of the domain are made, 
with only the pressure solution stored and relaxed, until a converged pressure solution is 
obtained. One final sweep of the domain may be made, using the converged pressure solution, to 
obtain the remaining variables. The quasi-multi-sweep scheme may be used to solve the reduced 
equations, but when it is used to solve the full equations a similar minimum step size stability 
restriction to that encountered when the single-sweep scheme is used to solve the full equations 
makes it difficult to obtain sufficient resolution and a stable solution. 

It has been found that for swirling diffuser flows no advantage has been gained by using the 
quasi-multi-sweep scheme, since it has only been capable of simulating those flows that may also 
be simulated using the single-sweep scheme. For this reason development of this scheme has not 
been pursued. 

1.3. Multi-sweep 

obtained using a multi-sweep scheme. 
This scheme is briefly described in Section 2.7. The results presented in Section 3 have been 

1.4. Numerical methods for strongly swirling flow 

Strongly swirling diffuser flow, sufficient to cause axial flow reversal at the centreline, is fully 
elliptic and therefore has no dominant direction. For this reason none of the numerical methods 
developed in the current project and described above may be used to simulate it, as they all 
exploit the existence of a dominant flow direction to enable the use of a more efficient algorithm. 

Researchers who have attempted to numerically predict strongly swirling flow have almost 
universally used the TEACH code produced at Imperial Collegeg or a variant of it. The TEACH 
code itself is based on the SIMPLE scheme developed by Patankar and Spalding." Thus we see 
for instance Kubo and Gouldin" use a modified form of Gosman's relaxation method, a 
precursor to TEACH. Rhode et al." use a version of the TEACH-T computer program. HahI3 
uses a method he attributes to Gosman and Pun, with the same reference as that given by Kubo 
and Gouldin above, and therefore presumably uses TEACH. Leschziner and Rodi14 use TEACH 
to simulate a strongly swirling free jet. Truelove and Mahmud15 use a modification of the 
TEACH program also to simulate a strongly swirling jet flow. 

All the TEACH-derived programs share the common features of using a SIMPLE scheme to 
enforce continuity and obtain the pressure field, a control volume approach to discretize the 
governing equations and under-relaxation with an AD1 procedure to integrate the resulting 
discrete equations. Most development in recent years has centred around the differencing form 
for the convective terms. Initially hybrid central/upwind methods were used; however, recently 
more accurate methods have been employed-Truelove and Mahmud used a QUICK scheme 
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and Hah a skewed second-order scheme. A more complete discussion of the TEACH program, 
together with a comparison between it  and the Multi-Sweep program used to obtain the results in 
the present paper, is given in Armfield and Fletcher.“ 

1.5. Turbulence models; overview 

Three types of turbulence models have been developed and evaluated. The first of these is an 
algebraic eddy viscosity approach, similar to that of Cebeci and Smith.I7 In this method the eddy 
viscosity is related to the distance from the wall in the near-wall region and to the displacement 
thickness in other regions of the flow. Results obtained using the above method are presented in 
Armfield and Fletcher.6 

The second is the two-equation k--& model.” Models of this type are the most commonly used 
and evaluated in the field of turbulence simulation, and have been shown to give satisfactory 
mean flow predictions in many c a ~ e s . ~ ~ * ~ *  One of the areas in which the standard k-E model is 
suggested to give unsatisfactory predictions is that of swirling jet Such poor prediction 
has been variously attributed to the inappropriate assumption of an isotropic eddy viscosity and 
to the commonly used form of the E equation not being suitable for swirling flow. To attempt to 
rectify the second of these two problems, we have tested a swirl-related modification to the E 

equation, given in Section 2.4, as well as the standard k-E model. To deal with the other difficulty, 
that of a non-isotropic eddy viscosity, rather than adjusting the k-E model, we have chosen to use 
an algebraic Reynolds stress model,” which is a direct approximation of the Reynolds stress 
equation, retaining their anisotropy. 

When algebraic Reynolds stress models are used for swirling flow, it is generally assumed that 
extra terms arising from the convective components, but with the appearance of production 
terms, obtained when the equations are expressed in cylindrical co-ordinates, may be treated as 
production terms, given in Section 2.3.” In the current project we have compared results with 
and without these ‘false’ production terms included. 

In the present paper we present results for a moderately swirling flow in a 20” diffuser, obtained 
using the multi-sweep scheme solving the full Navier-Stokes equations. We have used this flow as 
a means to test four turbulence models: two k--8 models and two algebraic Reynolds stress models. 
One k-E model is the standard model, whilst the other includes a modification to allow for the 
effect of swirl on the turbulence parameters to be more accurately predicted. The difference 
between the two algebraic Reynolds stress models is the inclusion of the extra ‘false’ production 
terms. Some results are also presented for non-swirling flow in an 8” diffuser, where a more 
detailed comparison of the prediction of the turbulence quantities is made. 

The derivation of the turbulence models is given in generalized co-ordinate-free tensor form in 
Section 2 and the equations are then expressed in a physical co-ordinate system, in this case in 
spherical co-ordinates. In Section 3 the results are presented, a discussion is provided in Section 4 
and conclsions are given in Section 5.  

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The governing equations of Newtonian flow may be written in terms of u, the mean velocity, and 
u, the fluctuating velocity vectors, in co-ordinate-free tensor form 2s 
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is the velocity vector, P is the pressure, g is the metric tensor, p is the dynamic viscosity and p is 
the density. Superscripts indicate contravariant quantities, subscripts indicate covariant quanti- 
ties, apostrophes in the lower position indicate covariant derivatives and is the partial derivative 
with respect to time. The above equations are for fluid with constant density and viscosity and are 
in the contravariant form. 

As can be seen in equation (l), the fluctuating components appear only in the term puku'. These 
terms are the fluctuating velocity correlations; they are the components of a second-order tensor, 
generally called the Reynolds stress tensor, and are the Reynolds or turbulent stresses. 

~ 

2.1. Reynolds stress equations 

Equation (1) together with the continuity equation provides us with a system of four equations 
with ten unknowns: the three mean velocity components, pressure and the six Reynolds stress 
components. The system is therefore underdetermined and extra equations must somehow be 
obtained to close it. It is possible to derive additional partial differential equations for each of the 
Reynolds stre~ses.~ When this is done we obtain the following equations: 

- - E U k z  
~ 

p(u'uj);,+ p -  ( ' ' ) , k ,  -pU'UkUJk-pUJUkUfk +p(gPufk+giku!k) 
u -'A 

convection production pressure strain 
~- ___ 

- p(uku'uJ),k + pg"(U'uJ) ,kl gik(uip),k - g"(u'p),k - 2pg k l T  (u,ku,I) 
j -  (3) 

diffusion dissipation 

The labels are used to give a physical interpretation to each term and provide a convenient way of 
referring to components of the equation. Equation (3) is an exact set of equations for the 
Reynolds stresses; if they formed a soluble system, the search for a universal turbulence model 
would be over, but as is explained in the next section this is not the case. 

Equation (3) may be used to construct an exact equation for k = uiui/2, the kinetic energy of the 
turbulent fluctuations, by contracting it on the free indices and dividing by two, giving 

- __ 
pk;z + p vkk, k = - pUkUl u!k - dUkk), k + pgklk ,  kl -dkbui), k - &?kf(U1lUi, k )  - W L  Y / -  (4) 

convection production diffusion dissipation 

2.2. Reynolds stress equations in modelled form 

Unfortunately, in constructing the additional Reynolds stress equations (3), new dependent 
variables have been introduced: the pressure strain term, the triple correlation and the pressure 
correlation in the diffusion term, and the dissipation term; so the system is still unclosed. Since in 
the present study an algebraic Reynolds stress model is used, it is only necessary to introduce 
modelling assumptions for the dissipation and pressure strain terms. 

The dissipation is assumed to be isotropic and therefore evenly distributed between the three 
normal stresses, and thus able to be represented by a scalar, giving17 

The pressure strain term has been shown to consist of three c o m p ~ n e n t s , ~ ~  one of which, the wall 
echo term, is considered only to be significant in near-wall regions (Section 4.1) and is not 
included in the present model due to the use of a mixing length formulation in the near-wall 
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region, given in Section 2.5. The other two are the term arising from the mutual interaction of the 
fluctuating velocities and that arising from the interaction of the mean rate of strain with the 
turbulence. Rotta’s proposal24 is generally used to model the first of these. Several suggestions 
have been made for modelling the second term. The one used here was proposed by Naot et aLZs 
and is used primarily because of its simplicity coupled with the fact that it appears to perform as 
well as the other This gives 

p(gjkUfk+ gikU!k) = -pC1&/k(UiUj-’ 3 9  “k)  -pC2(-uiukUIk-uiukUfk + $g”UkU,Ufk) 
I\ v 

Derivation of the above expressions, based on kinematic arguments, is given by Launder et aL2’ 
All constants are written as C with an associated subscript; the values used for turbulence 
constants in the present investigation are presented in Table 111. 

An inspection of the full Reynolds stress equations above shows that derivatives of the 
Reynolds stresses occur only in the convection and the diffusion terms. These terms may be 
modelled by assuming that the convection less diffusion of a Reynolds stress is proportional to the 
convection less diffusion of turbulent kinetic energy, in the ratio of the value of the stress to the 
value of the kinetic energy, suggested by Rodi,” giving the algebraic Reynolds stress equations 

due to Rotta due to Naot et nl. 

The addition of the term A’j is to account for the fact that when the above equations are expressed 
in cylindrical co-ordinates for swirling flow, it is suggested that it is necessary to retain some of the 
convection terms and treat them as false production The convection terms retained 
are those associated with the Christoffel symbols, but since these are entirely a function of the co- 
ordinate system being used, they cannot be expressed in generalized co-ordinates and are 
therefore presented in Section 2.3. This is not satisfactory from the point of view of developing co- 
ordinate-system-independent turbulence models. Results obtained using the algebraic Reynolds 
stress model with and without the extra false production terms included have been obtained and 
are presented in Section 3. 

Since with the above approximations the turbulent kinetic energy will appear explicitly in the 
Reynolds stress equations, it is also necessary to model terms in the k equation. The dissipation 
term has already been modelled above, and with the same assumption about the relative 
significance of the diffusion terms in high-Reynolds-number flow it is only necessary to model the 
ukk,,  term, which is suggested to be proportional to the gradient of k ”  
~ 

__ 
(Ukk), k = g k l ( C k V e f f k , k ) . f  9 (6) 

where veff is an effective viscosity equal to v + v,, v, being the turbulent eddy viscosity given below. 
The k equation may be written as 

~ 

k; t+  Ukk,k = - U k U I U f k  +gkf(CkVeffk,k),I - & - --+. (7) 
convection production diffusion dissipation 

It is still necessary to obtain an equation for E, the scalar dissipation of k. An exact equation can 
be derived from the Navier-Stokes equations, but such drastic modelling assumptions have to be 
introduced that the resulting equation has a highly empirical character. Therefore it is assumed 
that a transport equation for E similar to the k equation may be constructed by simply modifying 
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Table 111. Turbulence constants 

Turbulence model Identifier C, C, C,., C,, C,, C,, C, K 

k-E  k-E - - 1.0 1.44 082 1.92 0.09 0.41 
- -. ~ 

. .  

k-E Plus Richardson k-E + R - - 1.0 1.44 0.82 1.92 0.09 041 
correction factor 

Algebraic Reynolds stress ARS 2.8 0.8 1.0 1.44 0.82 1.92 - 0.4 I 

Algebraic Reynolds stress ARS+FP 3.0 0.3 1.0 1.44 0.82 1.92 - 0.4 1 
plus false production 

the terms in the k equation,29 giving 
~ 

E ; ,  + u k & , k  = C , , & / k (  - U k U ' u ! k )  +gk'(Cc2V,ffEek),[ - Cc,E2/k 

convection production dinusion dissipation 
----. (8) 

The correction to the E equation to allow for the influence of swirl is a function of the local 
co-ordinate system and is presented in Section 2.4. 

When the k--E models are used, it is assumed that the turbulent stresses may be related to the 
rate of deformation tensor via an eddy viscosity, in a manner analogous to the viscous stresses, as 

(9) 
~ . .  
U'U' = - v,(yjk u f k  + Y i k U ! k )  +$y"k .  

The addition of Sg'jk is to ensure that when the above equation is contracted on the free 
indices, the result is k, as otherwise it would be zero due to continuity. When the Reynolds stresses 
are substituted into the mean flow equations, this term is absorbed into the pressure and thus 
never appears explicitly. 

The eddy viscosity is then related to the k and E already calculated as 

V ,  = C, k2/E. (10) 

2.3. Turbulence models in physical co-ordinates 

To enable a solution to the equations given above to be obtained, they must be expressed in a 
suitable physical co-ordinate system. In the present case we have chosen to use spherical co- 
ordinates (Figure 1)  as they conform naturally to the boundary of the physical domain and 

X 

-- axis ---_ 
\ 
' ' 

\ 

' \ 
\ 

" 

X 

-- axis ---_ '. 
-\ 
\ 

\ 
\ 

" '. 
Figure 1. Spherical co-ordinate system 
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reduce flow-to-grid skewness when compared to Cartesian or cylindrical co-ordinate systems. 
Expressing the equations in physical co-ordinates is a straightforward, though tedious, process. 

The method to do this, as well as all of the equations, are given in Armfield.5 In this paper we will 
present only those equations associated with the turbulence models, in particular to demonstrate 
the differences between the two k--E models and the two algebraic Reynolds stress models, as these 
differences are very much a function of the co-ordinate system chosen. 

The algebraic Reynolds stress equations (5 )  when written in spherical co-ordinates are 

uu equation 
- 

- 
vv equation 

- 
wcot e 

k 

ww equation 
__ -wo -( w, u vcote)] 

-2wu wx-2wv--2ww ~ +-+- (1 - C2) 

+ Czf Pk-38 - 2- V W ( 1  - C2), 

k X xsin8 x x 

w -  
- - C1-E 

k(ww - 3 k )  x tan 8 
- 
uv equation 

- 

k 
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w -  

The false production terms associated with the Christoffel symbols and the convection terms, 
equation (9, have been included as the last term in each of the above equations (12H16) to allow 
them to be identified separately from the other terms. 

2.3.1. Production of k .  The term Pk which occurs in each of the above equations is the 
production of k; when expressed in spherical co-ordinates, it is given by 

- 
wv We -vw ---)-ww(3-+---)-wu w -  u v  __ wx--. 

-(xs:e xtan6 xsm6 x xtan6 X 

When we express the Reynolds stresses using the Boussinesq form, Pk becomes 

X 

2.4. k and E equations 

The k and E equations must also be written in spherical co-ordinates, giving 

k equation 

E equation 

(20) 

A modification to allow for the influence of swirl is to multiply the constant Ce3 in the above 
expression by the function fi =(1-0.2Ri), where Ri is the gradient Richardson number:14 

k 2  W 
c2 x2 s1n2 6 

Ri = -T( Wsin 6), . 
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This correction is based on the hypothesis that the destabilizing effect of swirl can be modelled 
through an increase in the length scale of the turbulent eddies. It predicts a turbulence damping 
effect over large regions of the flow where ( Wsin 8), is positive, leading to a reduction in the eddy 
vis~osity. '~ In practice we constrain fi to not be greater than 2.80 and not less than 1.40 to 
prevent the dissipation becoming either too large or too small and affecting the stability of the 
scheme. 

2.5. Near-wall values for k and E 

In the near-wall region the k and E fields vary very rapidly, leading to large radial  gradient^.^' 
To resolve such gradients, it is necessary to have an extremely fine mesh in this region. 
Additionally it has been demonstrated that the modelled form of the diffusion term in the k 
equation gives poor agreement with experimental data in the viscous region.31 Therefore rather 
than integrate the k and E equations to the wall, a near-wall point in the log-law region, at 
between a y+  of 30 and 100, is chosen to be the computational boundary, and values for k and E 

are obtained there from the following relations: 
Cz/4k:/2 

(22) 
P I '  

E w =  v: k,=- 1 2 c 1 / 2 '  

where k, and E, are the near-wall values for k and E respectively. We obtain v,  as 

'- R x tan 8 

and 

r 

In the above expression A = 26, the wall shear stress T, is obtained using a first-order single- 
sided differencing of the velocity at the wall, R is the local diffuser radius, r is the radius at the 
near-wall point and K is the von Karman constant, given in Table 111. We have assumed here that 
the only significant terms in the near-wall region are U,/x and W,/x - W/x  tan 8. 

2.6. Boundary conditions 

To complete the mathematical specification of the problem, it is necessary, in addition to the 
governing equations, to provide appropriate boundary conditions. The boundary conditions 
used are as follows. 

(1) The difluser entrance. The U and W profiles are obtained from the experimental data; The 
V profile, if it is not given, is assumed to be zero. The turbulent kinetic energy k is when possible 
taken from the experimental data; otherwise it is obtained by assuming a turbulence kinetic 
energy as a percentage of total energy, typically 2%. E at the entrance is assumed to obey the 
mixing length relation given in equation (22). The mixing length 1 is assumed to be 0.05 of the 
diffuser entrance diameter. 

Although no differential equations are solved for the Reynolds stresses, due to the occurrence 
of the axial derivatives of uu, uv and UW in the momentum equations, it is necessary to specify 
them at the entrance. To do this, it is assumed that their axial gradients are constant. 

-_ .  
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(2)  The axis. From the axisymmetry of the flow we obtain that the 6 gradients of U, k and E are 
zero, and that V and W are zero. We must also specify the UY, uw and EReynolds stresses. From 
experimental data it seems reasonable to set UW and E t o  zero, and the 6 gradient of ;to zero.32 

-- 

( 3 )  The wall. All velocities are set identically to zero; k and E are obtained at a near-wall point 
from the formulations given in equation (22). Reynolds stresses are obtained at a near-wall point 
from the algebraic Reynolds stress equations when that model is being used. 

(4) The exit. All axial gradients are set to zero. 

The normal gradient of the pressure is set to zero on all boundaries, except the wall, where it is 
obtained directly by enforcing a mass flow constraint.16 

2.7. Numerical scheme 

In this scheme, described in detail in Armfield and Fletcher,16 the domain is discretized in the 
manner indicated in Figure 2, with all variables stored at all locations in the domain. Each 
dependent variable is obtained sequentially from its own equation, the remaining dependent 
variables in that equation being obtained from the stored solutions. The new values of each 
variable are then used to relax the stored solutions. To provide an initial solution, it is assumed 
that those variables given at the diffuser entrance are constant for the entire domain while the 
remaining variables are set to zero. 

The pressure is treated as a special variable. Thus while all the other variables are obtained, and 
the stored solutions relaxed, in a single sweep in a manner very similar to that used in the single- 
sweep scheme, the pressure is obtained from a Poisson equation making several sweeps of the 
domain while the values of all other variables are held fixed. Convective terms are differenced 
using a hybrid central/upwind scheme, with all other terms centrally differenced. 

The multi-sweep scheme is the only scheme of those indicated in Table I1 that can solve the full 
equations with no minimum step size stability restriction but which can also be used to solve the 
partially reduced and the reduced equations. 

3. RESULTS 

The multi-sweep scheme described in Section 2.7 has been run on a Perkin-Elmer 3220 computer. 
Results presented are for an axial step size of 0.1 of the entrance diameter, with a non-constant 

n-1 n n + 1  
I I ----- $$$i-, 
I 
I I 

I 

Figure 2. Discretization 
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mesh of 40 points in the radial direction. The point nearest the wall is located 0401 of a diameter 
from the wall, while that nearest the axis is 0.02 of a diameter from the axis. Exponential 
stretching is used to increase the mesh size in the region away from the axis and the wall; the 
maximum change in grid size is 10%. Relaxation factors are 0.4 for all non-turbulence quantities 
and 0.2 for the turbulence quantities. Convergence is assumed when the maximum change in any 
field between one iteration and the next is less than O*OOO1. This leads to convergence for the k-& 
models in 400 iterations and for the algebraic Reynolds stress models in 600 iterations. Run times 
on the Perkin-Elmer are of the order of 30 s per iteration. The values used for the turbulence 
constants are listed in Table 111. 

3.1. Results of Clausen 

The experimental data of C l a ~ s e n ~ ~  consist of results for swirling flow in a conical diffuser of 
20" total internal angle, with an area ratio of four, at a Reynolds number of 200000, exhausting 
into the atmosphere. Swirl is generated by a rotating cylinder packed with axially oriented straws 
placed about one diameter upstream of the diffuser entrance. This has the effect of producing an 
inlet swirl profile of solid body rotation type, the magnitude of which may be varied by changing 
the speed of rotation of the cylinder, with close-to-uniform axial velocity in the core region. 

The experimental results presented are for the moderate swirl regime (Sn=05), with no axial 
velocity reversal either at the centreline or the wall. Without the inclusion of swirl the diffuser 
angle is such that separation at the wall takes place. In fact the level of swirl considered here is the 
only one that for this diffuser leads to no separation or reversal. Inclusion of any more swirl has 
been found to lead to centreline axial velocity reversal; any less leads to separation at the wall.33 
Clausen presents intial profiles for all mean velocities and for k which are used for the 
computation; the intial E profile is estimated in the manner indicated in Section 2.6. 

Figure 3 presents the results for the axial velocity obtained using the k--E, the k--E + R, the ARS 
and the ARS+FP turbulence models, compared with the data of Clausen, at a point half a 
diameter upstream from the diffuser exit. As can be seen, all the models lead to qualitatively 
satisfactory agreement, clearly predicting the overall reduction in velocity associated with the 

O=RESULTS OF C L R U S E N  
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Figure 3. Axial velocity using ARS, ARS + FP, k-6 and k--E + R models compared with data of Clausen 
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constant mass flow as well as the effect of swirl in reducing the centreline and increasing the near- 
wall axial velocity proportionally. The two algebraic Reynolds stress models perform better than 
the k--E models, which both underpredict the magnitude of the near-wall velocity peak. Of the two 
k--E models the k--E + R gives the better prediction, accurately predicting the centreline velocity 
and not underpredicting the near-wall velocity peak by as much. The ARS + F P  would appear to 
be slightly better than the ARS model. The ARS does predict the near-wa11 velocity peak more 
accurately, but places it too close to the wall and underestimates the centreline axial velocity. 

Figure 4 indicates the radial profiles for the swirl velocity. Once again the two algebraic 
Reynolds stress models give better prediction than the k--E models, with the latter giving very close 
to solid body rotation and underpredicting the magnitude of the near-wall velocity peak. Both 
algebraic Reynolds stress models predict the dip below solid body rotation of the experimental 
points very well, although both fail to match the very high level of swirl at the near-wall point. It is 
possible that there may be some experimental inaccuracy in the measurement of the near-wall 
swirl velocity, as the apparent non-existence of any boundary layer at the downstream location 
seems unusual. It is very difficult to say which of the algebraic Reynolds stress models is better; the 
ARS may be slightly better because of its more accurate prediction of the near-wall velocity peak. 
There appears to be very little difference between the two k--E models for the swirl velocity. 

Figure 5 shows the eddy viscosity distributions associated with the ARS and ARS + FP 
models, obtained from the Z a n d  UW stresses, compared with those obtained with the k--E and 
k--E + R models. The experimental eddy viscosities have been extracted from the experimental 
data and can be taken as an indication only, being subject to a great deal of error. Nonetheless, it 
is apparent that the experimental results indicate that the assumption of isotropy is not correct 
for this type of flow. 

We see that the k-E model predicts an eddy viscosity that falls somewhere between the 
experimental eddy viscosities, and that inciusion of the Richardson correction factor reduces its 
magnitude quite substantially. This results in an improved approximation to the axial eddy 
viscosity, but a worse approximation to the swirl eddy viscosity. 

The ARS model predicts anisotropic eddy viscosities, but as can be seen, there is very little 
difference between the axial eddy viscosity and the swirl eddy viscosity. The predicted swirl eddy 
viscosity is larger than the axial eddy viscosity, which is the same as the experimental data. 
Consequently the swirl eddy viscosity is considerably underpredicted, whilst the axial eddy 
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Figure 4. Swirl velocity using ARS, ARS + FP, k-E and k-E + R models compared with data of Clausen 
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Figure 5. Eddy viscosities obtained using the ARS, ARS + FP, k-& and k-e + R models compared with results of Clausen 

viscosity is predicted more accurately than by any other model. The ARS + FP model predicts far 
more anisotropy in the eddy viscosities than the ARS model; unfortunately the change is in the 
wrong direction, with the axial eddy viscosity larger than the swirl, the opposite to the 
experimental data. We also see that the ARS+FP model leads to a very uneven prediction; 
the ARS + FP model has been found to be in general less stable than the ARS model, and this is a 
reflection of that instability. 

Figures 6 and 7 demonstrate that the axial development of the axial and swirl velocities, using 
the ARS model, is in good agreement with the experimental results. The predictions are 
somewhat better at the upstream locations. 

61 
61 

-1 

3 

6)  
In 
61 

6l 
c9 

61 

I x=1.5 I v I I I  I 
0.00 0.50 1.00 r 

Figure 6. Development of axial velocity using ARS compared with data of Clausen 
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Figure 7. Development of swirl velocity using ARS compared with data of Clausen 

3.2. Results of Okwuobi and Azad 

Okwuobi and Azad3* present results for non-swirling flow in a conical diffuser of 8" internal 
angle, with an area ratio of four, discharging into the atmosphere. The entrance profiles are those 
of fully developed pipe flow, with the axial velocity very close to separation at the diffuser exit; the 
Reynolds number is 250000. This flow has been simulated using the multi-sweep algorithm with 
the ARS turbulence model. 

Although the flow is non-swirling, it is considered useful to present these results to enable the 
prediction of the turbulent quantities to be examined more closely. Figures 8,9 and 10 contain 
the results for the axial velocity, the turbulence kinetic energy and the UV stress respectively, 
obtained using the ARS model with the standard constants (Table 111), and using the ARS model 
with C,, set to 050 and K set to 2-00. Thus we have halved the gradient diffusion of k and 
increased the predicted length scale at the near-wall point by five times. Why we should choose to 
adjust these constants is discussed in the next section. 
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Figure. 8. Axial velocity using ARS model compared with data of Okwuobi and Azad 
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Figure 10. uxusing ARS model compared with data of Okwuobi and Azad 

If we first consider the results obtained using the standard constants, we see that the mean 
velocity is very well predicted but the k and &quantities are seriously underpredicted. The peak 
in both of the turbulent profiles has remained at a radial location of 0.5, which means that it has 
simply travelled straight on from the diffuser entrance rather than turning around the corner. It 
can be seen that the algorithm does predict the existence of these peaks but significantly 
underestimates them. At the near-wall point where k is obtained using the local equilibrium 
assumption it is underpredicted by around 75% and the predicted profile is too flat. 

As can be seen, by altering the constants we have obtained a much better prediction for k 
(Figure 9). Unfortunately the prediction of the mean velocity is now degraded, as can be seen 
from Figure 8, and the predicted &profile (Figure 10) has been increased too much. 



SWIRLING DIFFUSER FLOW 1005 

4. DISCUSSION 

The use of hybrid central/upwind differencing schemes of the type employed in the present multi- 
sweep scheme is a potential source of inaccuracy due to the possible numerical diff~sion.~’ In the 
flows considered in the present investigation the axial velocity is large enough so that at  most 
points of the flow upwind differencing is used for the axial convective term; the cross-stream 
velocity is small so that central differencing is used at  most points of the domain for the radial 
convective term. This raises the question of whether large numerical diffusion is resulting from the 
first-order differencing of the axial convection terms. In the present investigation we have only 
considered non-reversing flows in which the axial diffusion is relatively small. In addition we have 
used grids that have been demonstrated fine enough to lead to numerical diffusion-free solutions 
even for highly recirculating turbulent flow using a similar first-order upwind differencing 
scheme.36 It is therefore suggested that numerical diffusion is not having a significant effect on the 
solutions presented. 

4.1. Turbulence models 

For the flow of Clausen all of the turbulence models give satisfactory qualitative predictions of 
the mean velocities, with the two algebraic Reynolds stress models giving better prediction of the 
fine detail. In particular they predict the drop below solid body rotation of the swirl profile very 
well, which is not well predicted by the k-e models, and more accurately predict the axial 
centreline velocity and the magnitude of the near-wall velocity peak for both axial and swirl 
velocities (Figures 3 and 4). The inclusion of the Richardson correction factor, described in 
Section 2.4, does lead to a slight improvement for the axial velocity prediction, but makes very 
little difference to the swirl velocity. 

The axial velocity for the non-swirling flow of Okwuobi and h a d  (Section 3.2) is predicted 
very well using the ARS model. No detailed comparison of the turbulence models with each other 
has been made for this data set, as results were computed primarily to test the validity of the near- 
wall local equilibrium assumption (Section 2.5) and the effect of adjusting the diffusion parameter 
in the k equation. These features are common to both the ARS and k--E models. For the non- 
swirling flow of Okwuobi and Azad, including a Richardson number correction factor in the k-e 
model, or false production terms in the ARS model, has no effect. 

As has been demonstrated, it appears that by using a suitable model it is possible to obtain 
reasonable predictions for the mean flow, even though, as has been demonstrated in the flow of 
Clausen, the prediction of the eddy viscosity is rather poor. From the results (Figure 5 )  it is 
apparent that the eddy viscosities are anisotropic, with the swirl viscosity far larger than the axial 
viscosity. None of the turbulence models satisfactorily represents this anisotropy. The k-e model 
predicts an eddy viscosity that is too large for the axial viscosity and too small for the swirl 
viscosity. Inclusion of the Richardson correction factor reduces that viscosity to bring it more into 
line with the axial viscosity. It would appear therefore that it is more important to predict the 
axial viscosity than the swirl viscosity, as the Richardson correction improves the prediction of 
mean flow quantities compared to the standard k-e model. This is in agreement with the observed 
fact that the centreline axial velocity is the most sensitive parameter. The ARS model predicts an 
axial viscosity that is closer to the experimental value than either of the k--E models, but predicts a 
swirl viscosity that is so close to the axial that it may as well be isotropic. The 
ARS + F P  model predicts substantial anisotropy but in the wrong direction. Thus neither of the 
algebraic Reynolds stress models satisfactorily accounts for the anisotropy, and it appears that of 
the two viscosities it is more important to correctly predict the axial viscosity, which the ARS 
model does more accurately in the core region than the ARS + FP, k--E and k--E+ R models. 
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Although constructing an equivalent eddy viscosity from an ARS formulation is artificial, and 
certainly not an inherent part of the model, it is nonetheless felt that this is a valuable additional 
means of comparing the results with those of an eddy viscosity model. If the comparison is only 
made at the Reynolds stress level, it is possible that the mean velocity field may modify some 
feature in the eddy viscosity model that is primarily due to the eddy viscosity construction. It is 
suggested that the additional comparison at the eddy viscosity level allows more complete 
conclusions to be drawn. 

Considering the non-swirling flow of Okwuobi and Azad, we see that the magnitude of the 
turbulence quantities is severely underpredicted using the standard constants, and we also see 
that the peak is now some distance from the wall, at r = 0 5 ,  at the downstream location. This is 
the radius of the diffuser entrance, and what appears to have happened is that the near-wall peak 
in k and K h a s  carried straight on down the diffuser, so that by the exit it is well away from the 
wall and has increased significantly. Behaviour of this sort is not characteristic of attached 
boundary layers, for which the near-wall peak is, in the case of pipe flow at high Reynolds 
numbers, within 001 of a diameter of the wall. We do see behaviour of this sort in separating and 
nearly separating boundary 38 suggesting that the turbulent structure of diffuser flow 
may be similar to that of a two-dimensional boundary layer approaching a separation point. 

Two groups of researchers who have attempted to simulate the turbulence quantities in 
separating boundary layers are Johnson and H ~ r s t m a n ~ ~  and Viegas et aL3* Johnson and 
Horstman, using a two-equation k,  k'/'L-l model integrated to the wall, present results showing 
that the peak in turbulence quantities, which has moved away from the wall, is underestimated by 
around 70% at the separation point. Viegas et al. compare results obtained using a wall function 
approach, and a k-E model integrated to the wall, to simulate a separating boundary layer, and 
once again the peak, which has moved away from the wall, is being underestimated by both 
methods. On these bases we suggest that the experimental phenomenon observed in the diffuser is 
similar to that associated with separating two-dimensional boundary layers, and that it appears 
that neither wall functions nor two-equation models integrated to the wall can model the 
turbulence structure near to such a region in a completely satisfactory manner. 

Okwuobi and Azad present results demonstrating that their flow is not a log-law flow and does 
not have a region of local equilibrium. However, we obtain a near-wall boundary value for k by 
assuming that the flow is in local equilibrium, which, if this is not so, will lead to an inaccuracy. It 
might appear that integrating the equations to the wall, if the computer resources are available, 
rather than using a local equilibrium assumption, would correct this discrepancy. Both Johnson 
and Horstman and Viegas et al. present results obtained by integrating to the wall, and still 
underpredict the turbulent peaks by a significant amount. To suggest what the other problem 
may be, we refer to a paper by Bernard,31 who demonstrates that for fully developed channel flow 
the near-wall peak in k is underpredicted by around 25% when the k equation is integrated to the 
wall, even with the inclusion of near-wall correction factors. He suggests that it is the modelled 
form of the diffusion term that is primarily responsible for this underprediction. It could well be 
that a similar, though more severe, phenomenon is observed when the k equation is integrated to 
the wall for separating diffuser flow. 

This led us to suppose that by altering those constants associated with the diffusion of k,  and 
obtaining k at a near-wall point using the local equilibrium assumption, we may obtain an 
improvement. To test this hypothesis, we tried simulating the Okwuobi and Azad data with, 
firstly, the von Karman constant (K) set to 2.00, five times its normal value. By doing this, we 
expected to increase the near-wall boundary value for k obtained from the local equilibrium 
relation. The result was to increase the near-wall k value as expected, but the peak was still 
underpredicted due to the lack of curvature in the profile. Decreasing C,, to 050 (decreasing the 
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gradient diffusion of k by a half) increased the curvature of the k profile sufficiently to enable (with 
the altered von Karman constant) the k profile to be predicted very well at the downstream 
location (Figure9). Unfortunately at the same time the mean flow velocity prediction is less 
satisfactory (Figure 8) and uUis now overpredicted (Figure 10). This is not too surprising, since 
although we may have chosen a new set of constants that are more valid for separating flow, at 
the diffuser entrance where the flow is not close to separation these constants are not valid. 
Nonetheless, the result does give support to the hypothesis that the poor prediction of turbulence 
quantities in the Okwuobu and Azad flow is related to the invalidity of the local equilibrium 
assumption and poor modelling of the k diffusion term. Physically we can interpret these results 
as indicating that the production of turbulence in the diffuser flow in the near-wall region is larger 
than in fully attached flow, and that the diffusion 0f.k in the region of the peak is smaller than that 
predicted with the normal constant. 

When a wall echo effect similar to that given by Sloane et ~ 1 . ~ ~  is included in the pressure strain 
approximation, it is found to produce almost identical mean velocity profiles. Although it does 
damp the near-wall peak in 00, as it is designed to, it does not improve the prediction of the near- 
wall peak in the turbulent quantities. Therefore it appears that the use of a mixing length 
formulation in the near-wall region tends to minimize any contribution from the modelling of the 
wall echo effect. If the ARS turbulence model is used right up to the wall, it is likely that modelling 
of the wall echo effect will be more important. 

5. CONCLUSIONS 

To enable comparison and development of turbulence models :or swirling diffuser flows, it is 
essential that a suitable set of experimental data is available. These data must consist of detailed 
measurements of the inlet profiles, both mean and turbulent, and profiles at several axial 
locations in the diffuser. 

It is suggested that to obtain satisfactory predictions for the mean flow when moderate swirl is 
present, the standard k-c model is not satisfactory, and the Richardson number correction used in 
the present investigation, although it leads to some improvement, is not adquate. Further ad hoc 
modifications could be made to improve the k--E model for these flows, but it is felt that the use of 
a Reynolds stress model is a more satisfactory approach. The reason the k-E model gives 
unsatisfactory predictions is that it predicts an eddy viscosity that is much larger than the 
experimental axial eddy viscosity, which is the more important of the two considered. The 
Richardson correction factor improves this by reducing the eddy viscosity, primarily by in- 
creasing the dissipation. 

The two algebraic Reynolds stress models used in the present investigation both provide better 
prediction of the mean flow quantities than the k-e models. Of the two the ARS is preferred 
because it gives a better prediction for the eddy viscosities, providing a more accurate approxi- 
mation to the axial viscosity than the ARS+FP, which actually predicts the anisotropy in the 
wrong direction. 

The results for the eddy viscosities are very disappointing, with the anisotropy basically not 
being predicted at all by either the ARS or the ARS+FP models. Since prediction of the 
anisotropy is the main reason for using the algebraic Reynolds stress models, this is unfortunate. 
They do appear to predict the effect of the swirl on dampening the level of turbulence better than 
the k-e model. It is suggested that to determine if the algebraic approximation may be leading to 
loss of the anisotropy, and to determine which algebraic Reynolds stress approach is really better, 
it is necessary to compare the results obtained using the algebraic formulations with those 
obtained using a full Reynolds stress formulation. 
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The modelling of the length scale in the near-wall region and the modelling of the diffusion 
term in the k equation appear to be unsatisfactory for near-separating flows of the type found in 
diffusers. As has been demonstrated, the standard constants associated with these modelling 
assumptions do not accurately represent the behaviour of the diffuser flow at downstream 
locations, where it is close to separation. I t  may be necessary to make these constants functions of 
the axial location in order to suitably represent the apparent change in their value as the flow 
passes down the diffuser. Such an approach is currently being tested. 
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